Partial lowering of total huntingtin levels to treat adults with Huntington’s disease (HD): potential benefits and theoretical risks from human studies and animal models

Blair R Leavitt (1), Scott A Schobel (2) and Holly Kordasiewicz (3)

(1) Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
(2) F. Hoffmann-La Roche, Basel, Switzerland.
(3) Ionis Pharmaceuticals, Carlsbad, CA, USA.

Summary
HD is caused by the toxic form of a protein called huntingtin (HTT), and reducing the amount of this protein improves the health of animals engineered to develop HD. A new drug in development for HD, RG6042 (R07234292), partially lowers the amount of both the toxic form of HTT (mHTT) and the non-toxic form (wtHTT). A search of scientific literature identifies no safety risks from partially lowering wtHTT in adulthood.

Methods
• Peer-reviewed journal articles covering the following topics were included in this review:
 • studies in humans relevant to wtHTT lowering
 • partial wtHTT lowering therapies in normal rodents and non-human primates
 • transgenic animal models of HD
 • partial wtHTT lowering therapies in transgenic rodent models of HD
 • genetic inactivation of wtHTT in otherwise normal rodents
 • genetic manipulation of wtHTT in transgenic rodent models of HD
 • Primary literature on in vitro studies was excluded, but recent reviews article on in vitro findings were included.

Results

Studies in humans
• In a Phase 1/2a study (NCT02219036), wtHTT and mHTT lowering with RG6042 in adults with HD was generally safe and well tolerated up to four monthly doses.1
• In case studies of people with rare genetic variations, loss of one normal allele does not cause HD, and people with homozygous CAG expansions develop normally with a similar age of HD onset to heterozygotes.24 (Table 1)

Table 1: Effect of wtHTT lowering in humans

<table>
<thead>
<tr>
<th>Study type</th>
<th>Genotype</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG6042 Phase 1/2a1</td>
<td>wtHTT and mHTT lowering with four monthly doses of RG6042</td>
<td>Generally safe and well tolerated</td>
</tr>
<tr>
<td>Case study2</td>
<td>Woman with one normal and one disrupted HTT allele</td>
<td>No detectable abnormal phenotypes at 46 years of age</td>
</tr>
<tr>
<td>Case series4</td>
<td>Homozygous CAG-expansion mutations</td>
<td>Normal development up to onset of HD. No effect on onset of illness and pre-onset</td>
</tr>
<tr>
<td>Epidemiology study5</td>
<td>Transcription-lowering variants of either mHTT or wtHTT alleles</td>
<td>Lowering of mHTT delayed HD onset by a mean of 9.3 years. Lowering of wtHTT hastened HD onset by a mean of 3.3 years</td>
</tr>
</tbody>
</table>

Partial wtHTT lowering in adult rodents
• Partial lowering of wtHTT in normal adult rodents was generally safe and well tolerated over 2–6 months with no reports of alternation in motor performance or activity (Table 2)12
• Partial lowering of wtHTT and mHTT in animal models of HD had beneficial effects (Table 3)13,14,15,16

Table 2: Studies on partial lowering of endogenous wtHTT in normal adult rodents

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Magnitude of wtHTT reduction (%)</th>
<th>Follow-up duration</th>
<th>Mouse strain</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversible lowering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miha6526</td>
<td>75 (mRNA)</td>
<td>3–4 mo</td>
<td>FBV/N</td>
<td>No alterations in motor coordination or activity</td>
</tr>
<tr>
<td>Non-reversible lowering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV-shHTT</td>
<td>~55 (mRNA)</td>
<td>9 mo</td>
<td>C57BL/6</td>
<td>Altered striatal gene expression</td>
</tr>
<tr>
<td>AAV2/1-miRNA-mHTT</td>
<td>45 (mRNA); 55 (protein)</td>
<td>2–5 mo</td>
<td>FBV/N</td>
<td>No alterations in motor performance or activity</td>
</tr>
<tr>
<td>AAV-mi2-AFP</td>
<td>~70 (mRNA)</td>
<td>4 mo</td>
<td>NR</td>
<td>No neuronal loss or neurotoxicity in histological analyses</td>
</tr>
<tr>
<td>AAV-mi24-AFP</td>
<td>~65 (mRNA)</td>
<td>4 mo</td>
<td>C57BL/6</td>
<td>Minimal striatal toxicity in histological analysis</td>
</tr>
</tbody>
</table>

Partial wtHTT lowering in normal adult non-human primates
• No safety criteria were identified in any studies describing partial lowering of wtHTT in normal non-human primates, including up to 9 months of treatment with a 6-month recovery period in INON/Leavitt chronic toxicology studies (Table 4)16,17

Table 3: Studies on partial lowering of wtHTT and mHTT in animal models of HD

<table>
<thead>
<tr>
<th>Treatment</th>
<th>wtHTT reduction*</th>
<th>Model</th>
<th>Benefits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversible lowering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miha6526</td>
<td>wtHTT and mHTT (~75% maximum, normalization after 4 mo; mRNA)</td>
<td>BACHD mouse (Hdh<sup>129S5B/ScJ</sup>)</td>
<td>Improved motor function; Tendency towards longer lifespan</td>
<td>No atonement of beneficial functional effects vs mHTT-specific ASO</td>
</tr>
<tr>
<td>AAV-mi2-AFP</td>
<td>mHTT maximum protein reduction: 89% (mHTT); 71% (mHTT); 76% (mHTT)</td>
<td>Hu/h178</td>
<td>Increased cognition and behavioral phenotype across all studied ASOs</td>
<td>Potency of ASO on mHTT lowering appears to predict more improvement across experiments between the three studied ASOs</td>
</tr>
<tr>
<td>Non-reversible lowering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAV2-shHTT</td>
<td>wtHTT and mHTT (60% at 4 wks, 75% at 4 mo; mRNA)</td>
<td>HD-N171- 820 mouse (Hdh(+/-))</td>
<td>None</td>
<td>No difference in GABA-ergic neuronal survival and inclusion load ratios versus mHTT reduction</td>
</tr>
<tr>
<td>LV-shHTT</td>
<td>wtHTT only (56–79%; mRNA)</td>
<td>Non-transgenic rat (Hdh<sup>+/+</sup>)</td>
<td>None</td>
<td>No signs of toxicity</td>
</tr>
<tr>
<td>AAV2/1-miRNA- mHTT</td>
<td>wtHTT and mHTT (75% at 12 wks; mRNA and protein)</td>
<td>VPC128 mouse (Hdh<sup>+/+</sup>)</td>
<td>None</td>
<td>No overt striatal toxicity or neuroinflammation in histopathological specimens</td>
</tr>
</tbody>
</table>

Conclusions
• Lowering wtHTT showed little/no effects in humans or adult animals and non-allele specific HTT lowering is beneficial in HD animal models.
• Genetic ablation showed inconsistent effects and is not relevant to HTT lowering with ASOs, which is partial, transient, reversible and titratable.
• Non-allele specific lowering of HTT with RG6042 remains a promising HD therapeutic strategy and this is being further investigated in an open-label extension to the Phase 1/2a study.

Abbreviations
AAt, adenosine-associated virus; ASO, antisense oligonucleotide; GABA, y-aminobutyric acid; HD, Huntington’s disease; HTT, mouse Huntington’s disease homolog; Hdh, huntingtin; LV, lentivirus; mHTT, mutant HTT; mRNA, messenger RNA; miRNA, micro RNA; mo, month; NR, not reported; shRNA, short hairpin RNA; wks, weeks; wtHTT, wild type HTT.

Acknowledgments
We thank all the patients who participate in our studies and their families. Sponsored by Genentech Inc., a member of the Roche Group, and Ionis Pharmaceuticals Inc. Writing and editorial assistance was provided by Matt Gouging of MedAdvis Media, UK, in accordance with the Good Publication Practice (GPP3) guidelines (http://www.accessgpc.org/gpp3).

References
Full reference list available on request.

Acknowledgments
We thank all the patients who participate in our studies and their families. Sponsored by Genentech Inc., a member of the Roche Group, and Ionis Pharmaceuticals Inc. Writing and editorial assistance was provided by Matt Gouging of MedAdvis Media, UK, in accordance with the Good Publication Practice (GPP3) guidelines (http://www.accessgpc.org/gpp3).

Presented at HSG 2018: Unlocking HD, Houston, TX, USA; November 8–10, 2018
Partial lowering of total huntingtin levels to treat adults with Huntington’s disease (HD): potential benefits and theoretical risks from human studies and animal models

Blair R Leavitt, Scott A Schobel and Holly Kordasiewicz

Reference list

