IMpassion130: updated OS from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab + nab-paclitaxel in previously untreated locally advanced or metastatic TNBC

Peter Schmid,1 Sylvia Adams,2 Hope S. Rugo,3 Andreas Schneeweiss,4 Carlos H. Barrios,5 Hiroji Iwata,6 Véronique Diéras,7 Volkmar Henschel,8 Luciana Molinero,9 Stephen Y. Chui,9 Amreen Husain,8 Eric P. Winer,10 Sherene Loi,11 Leisha A. Emens12

1Barts Cancer Institute, Queen Mary University of London, London, UK; 2New York University Langone Medical Center, New York, NY; 3University of California San Francisco Comprehensive Cancer Center, San Francisco, CA; 4University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany; 5Centro de Pesquisa Clínica, HSL, PUCRS, Porto Alegre, Brazil; 6Aichi Cancer Center Hospital, Nagoya, Japan; 7Department of Medical Oncology, Centre Eugène Marquis, Rennes, France; 8F. Hoffmann-La Roche Ltd, Basel, Switzerland; 9Genentech, Inc, South San Francisco, CA; 10Dana-Farber Cancer Institute, Boston, MA; 11Peter MacCallum Cancer Centre, Melbourne, Australia; 12University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
Disclosures

• Dr Peter Schmid has the following financial relationships to disclose:
 • Grants, support of parent study and funding of editorial support from F. Hoffmann-La Roche during the conduct of the study
 • Grants and research support to institution from AstraZeneca, Roche/Genentech, Oncogenex, Novartis, Astellas outside this study
 • Honoraria from Pfizer, AstraZeneca, Novartis, Roche, Merck, Boehringer Ingelheim, Bayer, Eisai, Celgene and Puma outside this study
 • Uncompensated steering committee member for the IMpassion130 trial
 • Spouse is an employee of Roche
Background

• Patients with mTNBC have a poor prognosis with SOC chemotherapy alone; the median OS is approximately 18 months1-5

• IMpassion130 is the first Phase III study of cancer immunotherapy in mTNBC to demonstrate clinical benefit in PD-L1+ patients6

• Clinically meaningful improvement in OS was observed in the PD-L1+ population at the first interim OS analysis (43% deaths in the ITT population)6

• We present the second interim OS analysis from IMpassion130 after 59% deaths in the ITT population

PD-L1+: PD-L1 on ≥ 1% of IC as percentage of tumor area assessed by VENTANA SP142 IHC assay.

IC, tumor-infiltrating immune cells.

IMpassion130 Study Design

Patients with metastatic or inoperable, locally advanced TNBC without prior therapy for advanced TNBC

Stratification factors:
- Prior (curative setting) taxane use (yes vs no)
- Liver metastases (yes vs no)
- PD-L1 IC status (positive [≥ 1%] vs negative [< 1%])

• Co-primary endpoints in ITT and PD-L1 IC+: PFS and OS
• Pre-specified hierarchical testing of OS in ITT and, if significant, in PD-L1 IC+ patients
• In both treatment arms, 41% of patients were PD-L1 IC+

Atezolizumab
840 mg IV q2w
+ nab-paclitaxel
100 mg/m² IV on d1, d8, d15

Placebo
q2w IV
+ nab-paclitaxel
100 mg/m² IV on d1, d8, d15

Treatment until PD or intolerable toxicity

Survival follow-up

* Prior chemotherapy in the curative setting allowed if treatment-free interval ≥ 12 months. † 28-day cycle. ‡ Centrally evaluated per VENTANA SP142 IHC assay.
§ Efficacy endpoints assessed by investigators per RECIST 1.1. NCT02425891.
Primary PFS Analysis in the ITT and PD-L1 IC+ Subgroup

• PFS benefit driven by PD-L1 IC+ patients, as a treatment effect was not observed in PD-L1 IC− patients\(^1\)

• Based on these data,\(^2\) atezolizumab + nab-paclitaxel received accelerated approval by the FDA\(^3\) and is recommended for patients with PD-L1 IC+ mTNBC in the NCCN\(^4\) and AGO\(^5\) guidelines

Patient Disposition at Second Interim OS Analysis

Second Interim OS Analysis

<table>
<thead>
<tr>
<th>Patient Disposition</th>
<th>Atezolizumab + nab-paclitaxel (n = 451)</th>
<th>Placebo + nab-paclitaxel (n = 451)</th>
</tr>
</thead>
</table>

Patients on study, n (%)

<table>
<thead>
<tr>
<th>Alive on treatment</th>
<th>39 (9%)</th>
<th>13 (3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive in survival follow-up</td>
<td>133 (30%)</td>
<td>135 (30%)</td>
</tr>
</tbody>
</table>

Patients who discontinued study, n (%)

<table>
<thead>
<tr>
<th>Dead</th>
<th>255 (57%)</th>
<th>279 (62%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost to follow-up</td>
<td>24 (5%)</td>
<td>24 (5%)</td>
</tr>
</tbody>
</table>

First Interim Analysis (59% IF)

- 12.9 months mFU
- 43% deaths in ITT population

Second Interim Analysis (80% IF)

- 18.0 months mFU
- 59% deaths in ITT population

IF, information fraction; mFU, median follow-up.
Clinical cutoff date: January 2, 2019.
OS in ITT Population

Stratified HR, 0.86
(95% CI: 0.72, 1.02)
Log-rank $P = 0.0777$

<table>
<thead>
<tr>
<th></th>
<th>24-Month OS Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + nab-P (n = 451)</td>
<td>42% (37, 47)</td>
</tr>
<tr>
<td>P + nab-P (n = 451)</td>
<td>39% (34, 44)</td>
</tr>
</tbody>
</table>

NE, not estimable. Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0 mo.
OS in PD-L1+ Population

Stratified HR, 0.71\(^a\)
(95% CI: 0.54, 0.93)

<table>
<thead>
<tr>
<th></th>
<th>24-Month OS Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + nab-P (n = 185)</td>
<td>51% (43, 59)</td>
</tr>
<tr>
<td>P + nab-P (n = 184)</td>
<td>37% (29, 45)</td>
</tr>
</tbody>
</table>

Patients at risk

<table>
<thead>
<tr>
<th></th>
<th>A + nab-P</th>
<th>P + nab-P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>185</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

\(^a\) Not formally tested due to pre-specified hierarchical analysis plan.

Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0 months.
Comparison of OS in PD-L1+ and PD-L1− Populations

Clinical cutoff date: January 2, 2019.

<table>
<thead>
<tr>
<th>Population</th>
<th>Median OS, mo</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + nab-P</td>
<td>25.0</td>
<td>0.71 (0.54, 0.93)</td>
</tr>
<tr>
<td>P + nab-P</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>PD-L1 IC+</td>
<td>19.7</td>
<td>0.97 (0.78, 1.20)</td>
</tr>
<tr>
<td>PD-L1 IC−</td>
<td>19.6</td>
<td></td>
</tr>
</tbody>
</table>

OS (%)

Time (months)

A + nab-P (PD-L1+ n = 185)
P + nab-P (PD-L1+ n = 184)
A + nab-P (PD-L1− n = 266)
P + nab-P (PD-L1− n = 267)
Subsequent Therapies

Atezolizumab + nab-paclitaxel (n = 451)

- Anti-metabolite: 42% (Atezolizumab) vs 45% (Placebo)
- Platinum compound: 27% (Atezolizumab) vs 27% (Placebo)
- Anti-neoplastic agent NEC: 18% (Atezolizumab) vs 22% (Placebo)
- Cytotoxic antibiotic (i.e., anthracycline): 15% (Atezolizumab) vs 21% (Placebo)
- Alkylating agent: 11% (Atezolizumab) vs 16% (Placebo)
- Taxane: 8% (Atezolizumab) vs 12% (Placebo)
- Vinca alkaloid: 6% (Atezolizumab) vs 8% (Placebo)
- Immune checkpoint inhibitor: 4% (Atezolizumab) vs 6% (Placebo)
- Angiogenesis inhibitor: 4% (Atezolizumab) vs 5% (Placebo)

Placebo + nab-paclitaxel (n = 451)

- Anti-metabolite: 45% (Placebo) vs 45% (Placebo)
- Platinum compound: 27% (Placebo) vs 27% (Placebo)
- Anti-neoplastic agent NEC: 22% (Placebo) vs 22% (Placebo)
- Cytotoxic antibiotic (i.e., anthracycline): 21% (Placebo) vs 21% (Placebo)
- Alkylating agent: 16% (Placebo) vs 16% (Placebo)
- Taxane: 12% (Placebo) vs 12% (Placebo)
- Vinca alkaloid: 8% (Placebo) vs 8% (Placebo)
- Immune checkpoint inhibitor: 6% (Placebo) vs 6% (Placebo)
- Angiogenesis inhibitor: 5% (Placebo) vs 5% (Placebo)

NEC, not elsewhere classified.

Data cutoff: January 2, 2019. Presented data limited to therapies received by ≥ 5% of patients in any treatment arm.

- **Anti-metabolite:** Includes capecitabine, gemcitabine, gemcitabine hydrochloride, fluorouracil, methotrexate, cytarabine, decitabine, flouxuridine, methotrexate sodium, pemetrexed, tegafur.
- **Immune checkpoint inhibitor:** Includes monoclonal antibodies targeting PD-L1, PD-1 and CTLA-4.

Dr Peter Schmid

IMpassion130: Updated OS

Updated Safety Analysis

- Safety data remain consistent with those previously published
- See poster #149 for further safety analysis details (Schneeweiss et al.) and poster #148 for patient-reported outcomes (Adams et al.)

* Median follow-up 15.6 mo (4.5 months after primary PFS analysis).

\[\text{AESI} \] requiring systemic corticosteroids

Conclusions

• IMpassion130 is the first and only Phase III study to show the clinically meaningful benefit of first-line immunotherapy in mTNBC

• PD-L1 IC status predicts clinical benefit with atezolizumab + nab-paclitaxel

• Although not formally testable due to the pre-specified statistical analysis plan, a median OS improvement from 18 to 25 months was observed in the PD-L1+ population (HR, 0.71)

• Atezolizumab + nab-paclitaxel was well tolerated, with no cumulative toxicities and no new- or late-onset safety signals

• Atezolizumab + nab-paclitaxel sets a new benchmark as the first therapy to cross the 2-year landmark OS benefit in first-line therapy for PD-L1+ mTNBC

• Atezolizumab + nab-paclitaxel is approved by the FDA1 and recommended for the treatment of patients with PD-L1 IC+ mTNBC in the NCCN2 and AGO3 guidelines

Acknowledgments

• The patients and their families
• The investigators and clinical study sites
• Celgene for providing nab-paclitaxel for this study
• This study is sponsored by F. Hoffmann-La Roche, Ltd.
• Medical writing assistance for this oral presentation was provided by Steffen Biechele, PhD, of Health Interactions, Ltd. and funded by F. Hoffmann-La Roche, Ltd.