

IMpassion130: Results from a global, randomised, double-blind, Phase III study of atezolizumab + *nab*-paclitaxel vs placebo + *nab*-paclitaxel in treatment-naive locally advanced or metastatic triple-negative breast cancer

Peter Schmid,¹ Sylvia Adams,² Hope S. Rugo,³ Andreas Schneeweiss,⁴ Carlos H. Barrios,⁵ Hiroji Iwata,⁶ Véronique Diéras,⁷ Roberto Hegg,⁸ Seock-Ah Im,⁹ Gail Shaw Wright,¹⁰ Volkmar Henschel,¹¹ Luciana Molinero,¹² Stephen Y. Chui,¹² Roel Funke,¹² Amreen Husain,¹¹ Eric P. Winer,¹³ Sherene Loi,¹⁴ Leisha A. Emens¹⁵

¹Barts Cancer Institute, Queen Mary University of London, London, UK; ²New York University Langone Medical Center, New York, NY, USA; ³University of California San Francisco Comprehensive Care Center, San Francisco, CA, USA; ⁴University Hospital Heidelberg, Heidelberg, Germany; ⁵Centro de Pesquina Clínica, HSL, PUCRS, Porto Alegre, Brazil; ⁶Aichi Cancer Center Hospital, Aichi, Japan; ⁷Department of Medical Oncology, Institut Curie, Paris, France; ⁸University of São Paulo, São Paulo, Brazil; ⁹Seoul National University Hospital, Seoul, Korea; ¹⁰Florida Cancer Specialists & Research Institute, New Port Richey, FL, USA; ¹¹Roche, Basel, Switzerland; ¹²Genentech, Inc., South San Francisco, CA, USA; ¹³Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ¹⁵Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA, now with UPMC Hillman Cancer Center, Pittsburgh, PA USA

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

esmo.org

Disclosures

- Dr Peter Schmid has the following financial relationships to disclose:
 - Grants, support of parent study, and funding of editorial support from F. Hoffmann-La Roche during the conduct of the study
 - Grants and research support to institution from AstraZeneca, Roche/Genentech, Oncogenex, Novartis, Astellas outside this study
 - Honoraria from Pfizer, AstraZeneca, Novartis, Roche, Merck, Boehringer Ingelheim, Bayer, Eisai, Celgene and Puma outside this study
 - Uncompensated steering committee member for the IMpassion130 trial
 - Spouse is an employee of Roche

Triple-negative breast cancer (TNBC)

- Patients with advanced or metastatic TNBC experience poor outcomes relative to patients with other breast cancer subtypes,¹ with a median OS of ≈ 18 months or less²⁻⁴
- First-line treatment typically includes single-agent taxane or anthracycline chemotherapy^{5,6}
- No targeted therapies have improved OS to date
- Checkpoint inhibition may be a useful approach in the treatment of TNBC
 - PD-L1 can inhibit anti-cancer immune responses⁷
 - PD-L1 in TNBC is expressed mainly on tumour-infiltrating immune cells (IC)^{8,9}

Atezolizumab and chemotherapy

Atezolizumab: Restores anti-cancer immunity,¹ with activity further enhanced by chemotherapy-induced antigen exposure

 Atezolizumab (anti–PD-L1) monotherapy is approved in the United States, Europe and elsewhere for certain types of metastatic urothelial carcinoma and lung cancer⁴

MUNICH 2018

- In a Phase I study, atezolizumab monotherapy was active in multiple cancers, including TNBC,^{5,6} with greater activity in patients whose tumours had PD-L1 IC ≥ 1%⁶
- The addition of chemotherapy can enhance atezolizumab's anti-tumour activity^{7,8}
 - In a Phase Ib study in mTNBC, concurrent administration of *nab*-paclitaxel did not inhibit atezolizumab-mediated immunodynamic effects⁸

DC, dendritic cell.

1. Chen Immunity 2013. 2. Zitvogel Immunity 2013. 3. Emens CIR 2015. 4. TECENTRIQ US PI/SmPC 2018. 5. Herbst Nature 2014. 6. Emens JAMA Oncol 2018. 7. Jotte ASCO 2018. 8. Pohlmann AACR 2018.

IMpassion130 study design

- Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations^d
 - Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

IC, tumour-infiltrating immune cell; TFI, treatment-free interval. ^a ClinicalTrials.gov: NCT02425891. ^b Locally evaluated per ASCO–College of American Pathologists (CAP) guidelines. ^c Centrally evaluated per VENTANA SP142 IHC assay (double blinded for PD-L1 status). ^d Radiological endpoints were investigator assessed (per RECIST v1.1).

IMpassion130 statistical testing

- Primary PFS analysis (PFS tested in ITT and PD-L1+ populations)
- First interim OS analysis (OS tested in ITT population, then, if significant, in PD-L1+ population)

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

^a α recycled if PFS/ORR testing is significant. Hazard ratio (HR)/P value-stopping boundaries are dependent on the OS analysis timing.

IMpassion130 patient disposition

• Safety-evaluable population: 452^a

Safety-evaluable population: 438^a

Data cutoff: 17 April 2018. ^a 6 patients per arm did not receive study treatment; 7 patients in the Plac + nab-P arm received 1 dose of atezolizumab and were evaluated in the Atezo + nab-P safety population.

IMpassion130 baseline characteristics

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)				
Median age (range), y	55 (20-82)	56 (26-86)				
Female, n (%)	448 (99%)	450 (100%)				
Race, n (%) ^a						
White	308 (68%)	301 (67%)				
Asian	85 (19%)	76 (17%)				
Black/African American	26 (6%)	33 (7%)				
Other/multiple	20 (4%)	26 (6%)				
ECOG PS, n (%) ^{b,c}						
0	256 (57%)	270 (60%)				
1	193 (43%)	179 (40%)				
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)				
Prior taxane	231 (51%)	230 (51%)				
Prior anthracycline	243 (54%)	242 (54%)				

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)			
Metastatic disease, n (%)	404 (90%)	408 (91%)			
No. of sites, n (%) ^d					
0-3	332 (74%)	341 (76%)			
≥ 4	118 (26%)	108 (24%)			
Site of metastatic disease, n (%)					
Lung	226 (50%)	242 (54%)			
Bone	145 (32%)	141 (31%)			
Liver	126 (28%)	118 (26%)			
Brain	30 (7%)	31 (7%)			
Lymph node only ^d	33 (7%)	23 (5%)			
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)			

Data cutoff: 17 April 2018. ^a Race was unknown in 12 patients in the Atezo + nab-P arm and 15 in the Plac + nab-P arm. ^b Of n = 450 in each arm. ^c ECOG PS before start of treatment was 2 in 1 patient per arm. ^d Of n = 450 in the Atezo + nab-P arm and n = 449 in the Plac + nab-P arm arm.

Primary PFS analysis: ITT population

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

NE, not estimable. Data cutoff: 17 April 2018. Median PFS durations (and 95% CI) are indicated on the plot. Median follow-up (ITT): 12.9 months.

Primary PFS analysis: PD-L1+ population

Interim OS analysis: ITT population^a

Data cutoff: 17 April 2018. Median OS durations (and 95% CI) are indicated on the plot. Median follow-up (ITT): 12.9 months. ^a For the interim OS analysis, 59% of events had occurred. ^b Significance boundary was not crossed.

Interim OS analysis: PD-L1+ population

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

Data cutoff: 17 April 2018. Median OS durations (and 95% CI) are indicated on the plot. ^a Not formally tested.

PFS subgroup analysis: ITT population

Secondary efficacy endpoints

- Numerically higher and more durable responses were seen in the Atezo + nab-P arm
 - Differences were not significant based on α level = 0.1% (ITT: *P* = 0.0021; PD-L1+: *P* = 0.0016)
- The CR rate was higher in the Atezo
 + nab-P arm vs the Plac + nab-P arm
 - ITT population: 7% vs 2%
 - PD-L1+ patients: 10% vs 1%

Data cutoff: 17 April 2018. Objective response–evaluable patients: ^a 450 in Atezo + nab-P arm and 449 in Plac + nab-P arm. ^b 185 in Atezo + nab-P arm and 183 in Plac + nab-P arm. ^c No death or PD.

Exposure and dose intensity

	nab-P Exposure		Atezo or Plac Exposure			
	Atezo + nab-P (n = 452)	Plac + nab-P (n = 438)	Atezo + nab-P (n = 452) ^a	Plac + nab-P (n = 438)		
Treatment duration	on, weeks					
Median (range)	22.1 (0-137)	21.8 (0-103)	24.1 (0-139)	22.1 (0-109)		
Patients with indi	cated treatment du	uration, n (%)				
≤ 16 weeks	361 (80%)	316 (72%)	355 (79%)	316 (72%)		
≤ 6 months	315 (70%)	257 (59%)	311 (69%)	259 (59%)		
≤ 12 months	100 (22%)	75 (17%)	138 (31%)	108 (25%)		
≤ 18 months	53 (12%)	44 (10%)	89 (20%)	63 (14%)		
> 18 months	12 (3%)	7 (2%)	25 (6%)	15 (3%)		
Dose intensity, %						
Mean (SD)	87.7 (18%)	90.4 (15%)	95.8 (10%)	NE		
No. of cycles						
Median (range)	6.0 (1-34)	6.0 (1-26)	7.0 (1-35)	6.0 (1-28)		

 A higher proportion of patients in the Atezo + nab-P arm compared with the Plac + nab-P arm received nab-P for at least 6 months (70% vs 59%) and at least 12 months (22% vs 17%)

 Atezo did not compromise the dose intensity of *nab*-P

> Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

Safety evaluable population. Data cutoff: 17 April 2018. ^a Excludes placebo exposure for 13 patients in the Atezo + nab-P arm.

Safety summary

	Atezo + nab-P	Plac + nab-P
AE, n (%)	(n = 452)	(n = 438)
All-cause AEs		
Any grade	449 (99%)	429 (98%)
Grade 3-4	220 (49%)	185 (42%)
Grade 5	6 (1%)	3 (1%)
Treatment-related AEs		
Any grade	436 (96%)	410 (94%)
Grade 3-4	179 (40%)	132 (30%)
Grade 5 ^a	3 (1%) ^a	1 (< 1%) ^a
Any grade serious AEs		
Serious AEs regardless of attribution	103 (23%)	80 (18%)
Treatment-related serious AEs	56 (12%)	32 (7%)
Any-grade AEs leading to any treatment discontinuation	72 (16%)	36 (8%)
Leading to atezo or plac discontinuation	29 (6%)	6 (1%)
Leading to <i>nab</i> -P discontinuation	72 (16%)	36 (8%)
Any-grade AEs leading to any dose reduction or interruption	212 (47%)	177 (40%)
Leading to atezo or plac dose interruption	139 (31%)	103 (24%)
Leading to nab-P dose reduction or interruption	195 (43%)	172 (39%)

AE, adverse event. Safety-evaluable population. Data cutoff: 17 April 2018. ^a Treatment-related deaths: autoimmune hepatitis, mucosal inflammation/death, septic shock (n = 1 each, Atezo + nab-P arm); hepatic failure (n = 1, Plac + nab-P arm).

Most common AEs regardless of attribution

AEs in \geq 20% (all grade) or \geq 2% (grade 2.4) of patients	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
in either arm, n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Alopecia	255 (56%)	3 (1%)	252 (58%)	1 (< 1%)
Fatigue	211 (47%)	18 (4%)	196 (45%)	15 (3%)
Nausea ^a	208 (46%)	5 (1%)	167 (38%)	8 (2%)
Diarrhoea	147 (33%)	6 (1%)	150 (34%)	9 (2%)
Anaemia	125 (28%)	13 (3%)	115 (26%)	13 (3%)
Constipation	113 (25%)	3 (1%)	108 (25%)	1 (< 1%)
Cough ^a	112 (25%)	0	83 (19%)	0
Headache	105 (23%)	2 (< 1%)	96 (22%)	4 (1%)
Neuropathy peripheral	98 (22%)	25 (6%)	97 (22%)	12 (3%)
Neutropaeniaª	94 (21%)	37 (8%)	67 (15%)	36 (8%)
Decreased appetite	91 (20%)	3 (1%)	79 (18%)	3 (1%)
Neutrophil count decreased	57 (13%)	21 (5%)	48 (11%)	15 (3%)
Hypertension	22 (5%)	4 (1%)	24 (5%)	11 (3%)

- The most common AEs were generally similar between arms
- Most common Grade 3-4
 AEs: neutropaenia,
 decreased neutrophil count,
 peripheral neuropathy,
 fatigue, anaemia
 - Grade 3-4 AEs ≥ 2%
 higher in the Atezo
 + nab-P arm included
 peripheral neuropathy
 (6% vs 3%)

Data cutoff: 17 April 2018. ^a AEs with \geq 5% higher incidence in the A + nab-P arm vs P + nab-P arm; others include pyrexia and hypothyroidism (not shown in the table because overall frequency was < 20%).

Most common serious AEs

SAEs occurring in ≥ 1% of patients in either arm (regardless of attribution)

	Atezo + nab-P (n = 452)		Plac + (n = -	nab-P 438)
SAE, n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4
All	103 (23%)	78 (17%)ª	80 (18%)	56 (13%) ^ь
Pneumonia	10 (2%)	8 (2%) ^c	5 (1%)	0
Urinary tract infection	5 (1%)	2 (< 1%)	0	0
Dyspnoea	5 (1%)	3 (1%)	2 (< 1%)	2 (< 1%)
Pyrexia	5 (1%)	3 (1%)	3 (1%)	0

- A higher proportion of patients in the Atezo + nab-P arm than in the Plac + nab-P arm reported SAEs (23% vs 18%)
- No SAE was reported with a \geq 2% difference between treatment arms

SAE, serious adverse event. Data cutoff: 17 April 2018. ^a Six Grade 5 events occurred. ^b Three Grade 5 events occurred. ^c One Grade 5 event occurred.

AESIs suggestive of potential immune-related aetiology

	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
AESI, n (%)ª	Any Grade	Grade 3-4	Any Grade	Grade 3-4
All	259 (57%)	34 (8%)	183 (42%)	19 (4%)
Important AESIs				
Hepatitis (all)	69 (15%)	23 (5%)	62 (14%)	13 (3%)
Hepatitis (diagnosis)	10 (2%)	6 (1%)	7 (2%)	1 (< 1%)
Hepatitis (lab abnormalities)	62 (14%)	17 (4%)	58 (13%)	12 (3%)
Hypothyroidism	78 (17%)	0	19 (4%)	0
Hyperthyroidism	20 (4%)	1 (< 1%)	6 (1%)	0
Pneumonitis	14 (3%)	1 (< 1%)	1 (< 1%)	0
Meningoencephalitis ^b	5 (1%)	0	2 (< 1%)	0
Colitis	5 (1%)	1 (< 1%)	3 (1%)	1 (< 1%)
Adrenal insufficiency	4 (1%)	1 (< 1%)	0	0
Pancreatitis	2 (< 1%)	1 (< 1%)	0	0
Diabetes mellitus	1 (< 1%)	1 (< 1%)	2 (< 1%)	1 (< 1%)
Nephritis	1 (< 1%)	0	0	0
Other AESIs ^c				
Rash	154 (34%)	4 (1%)	114 (26%)	2 (< 1%)
Infusion-related reactions	5 (1%)	0	5 (1%)	0

 1 grade 5 AESI per arm (both treatment related):

- Atezo + nab-P: autoimmune hepatitis

MUNICH 2018

- Plac + nab-P: hepatic failure
- All hypothyroidism AESIs were grade 1-2; none led to discontinuation
 - Atezo + nab-P: 17%
 - Plac + nab-P: 4%
- Pneumonitis was infrequent with only 1 grade 3-4 event in the Atezo + nab-P arm
 - Atezo + nab-P: 3%
 - Plac + nab-P: < 1%
- Hepatitis rates were balanced

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

congress

AESI, adverse event of special interest. Data cutoff: 17 April 2018. ^a Baskets of preferred terms according to medical concepts. ^b All events of photophobia. ^c Includes all AESIs occurring in ≥ 1% of patients in either arm.

MUNICH ESVO 20

IMpassion130 conclusions

- IMpassion130 is the first Phase III study to demonstrate a benefit with first-line immunotherapy in mTNBC
 - Atezolizumab + *nab*-paclitaxel resulted in statistically significant PFS benefit in the ITT and PD-L1+ populations (ITT HR = 0.80 [95% CI: 0.69, 0.92] and PD-L1+ HR = 0.62 [95% CI: 0.49, 0.78]), which was clinically meaningful in the PD-L1+ population
 - At this first interim OS analysis, clinically meaningful improvement in OS with atezolizumab + nab-paclitaxel (vs placebo + nab-paclitaxel) was observed in the PD-L1+ population, with a HR of 0.62 and a median OS improvement from 15.5 months to 25.0 months (formal OS testing in PD-L1+ patients not performed per hierarchical study design)
 - No detriment observed for the PD-L1– subgroup
- Atezolizumab + nab-paclitaxel was well tolerated, with a safety profile consistent with each agent
- For patients with PD-L1+ tumours,^a these data establish atezolizumab + nab-paclitaxel as a new standard of care

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer

P. Schmid, S. Adams, H.S. Rugo, A. Schneeweiss, C.H. Barrios, H. Iwata, V. Diéras, R. Hegg, S.-A. Im, G.S. Wright, V. Henschel, L. Molinero, S.Y. Chui, R. Funke, A. Husain, E.P. Winer, S. Loi, and L.A. Emens, for the IMpassion130 Investigators*

> Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

congress

21

MUNICH 2018

Acknowledgements

- The patients and their families
- The investigators and clinical study sites
- Celgene for providing nab-paclitaxel for this study
- This study is sponsored by F. Hoffmann-La Roche, Ltd.
- Medical writing assistance for this oral presentation was provided by Ashley J. Pratt, PhD, of Health Interactions and funded by F. Hoffmann-La Roche, Ltd.