The Patient Impact of 11 Years of Ocrelizumab **Treatment in Multiple Sclerosis: Long-Term Data** from the Phase III OPERA and ORATORIO Studies

SL Hauser,¹ G Giovannoni,² M Filippi,^{3,4} MS Weber,^{5,6} X Montalban,⁷ JA Nicholas,⁸ HM Schneble,⁹ Q Wang,⁹ L Kappos¹⁰

¹UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; ²Queen Mary University of London, UK; ³Neurology Unit, Neurophysiology Service, Neurorehabilitation Unit, Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; ⁴Vita-Salute San Raffaele University, Milan, Italy; ⁵Institute of Neurology, Göttingen, Germany; ⁶University Medical Centre, Göttingen, Germany, and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany; ⁷Department of Neurology and Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁸Ohio Health Multiple Sclerosis Clinic, Columbus, OH, USA; ⁹F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁰Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital Basel, University of Basel, Basel, Switzerland

OBJECTIVE

To assess the long-term (11-year) impact of ocrelizumab on disability accumulation in patients with relapsing and primary progressive MS

KEY TAKEAWAYS

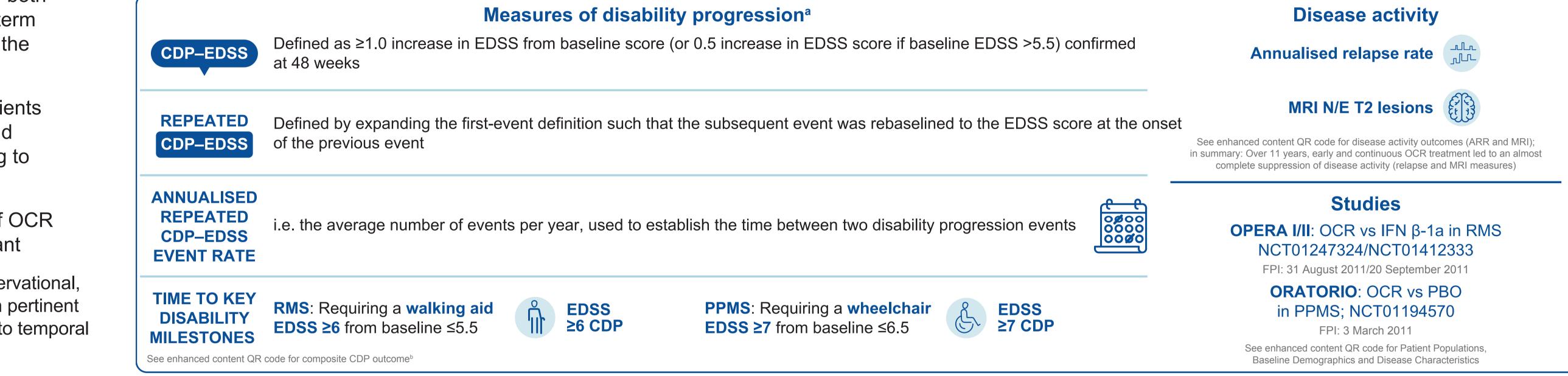
After 11 years, continuous ocrelizumab treatment was effective in controlling long-term disease activity and preventing disability accumulation:

- Three-quarters of patients with RMS were progression-free and >90% did not need a walking aid
- A third of patients with PPMS were progression-free and 80% did not need a wheelchair

The impact of over a decade of ocrelizumab treatment in reducing disability accumulation reinforces the role of early treatment in preserving patient function across the MS spectrum^{1–3}

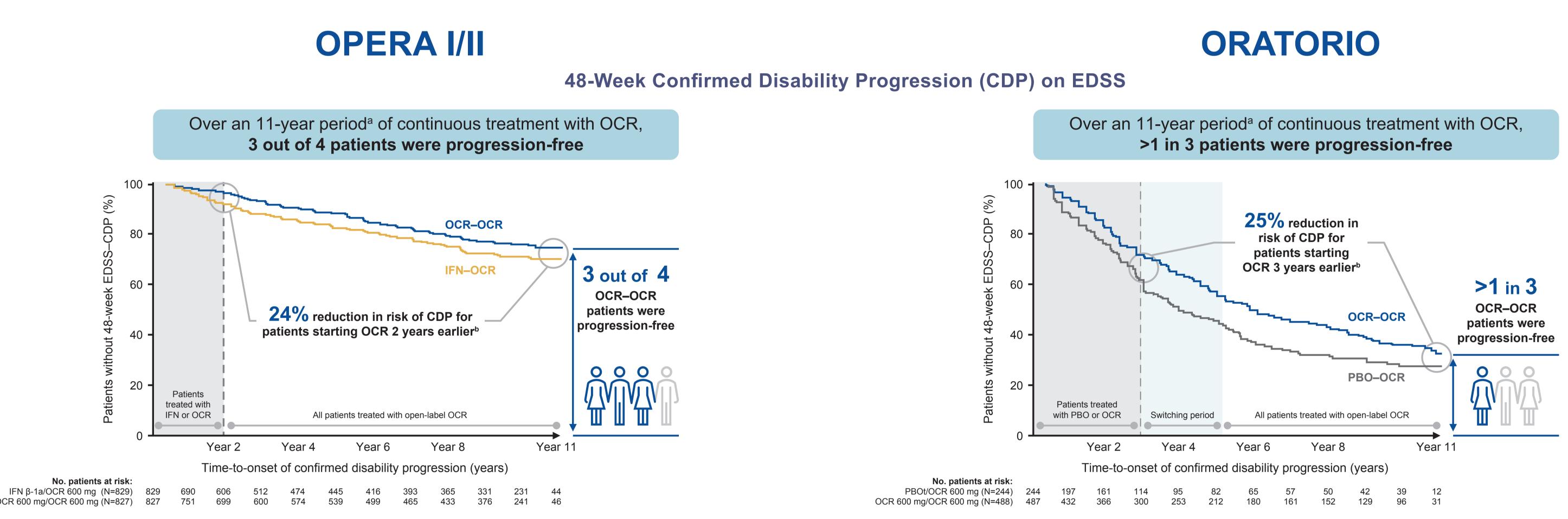
P1664

https://ter.li/jpcpzy


INTRODUCTION

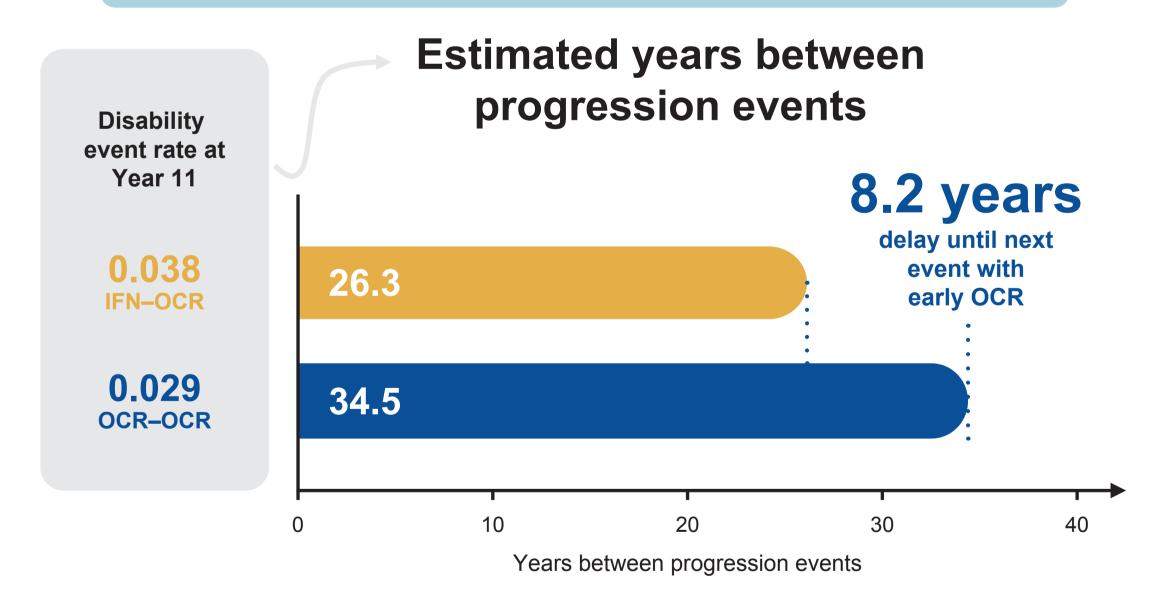
- OCR, the first and only anti-CD20 monoclonal antibody approved for the treatment of both RMS and PPMS,^{4,5} has a robust long-term safety and efficacy experience across the spectrum of disease⁶
- Over 11 years, more than 350,000 patients have been treated with OCR in trial and post-marketing settings, corresponding to >1 million patient years^{6,7}
- Understanding the long-term impact of OCR on patient function is therefore important

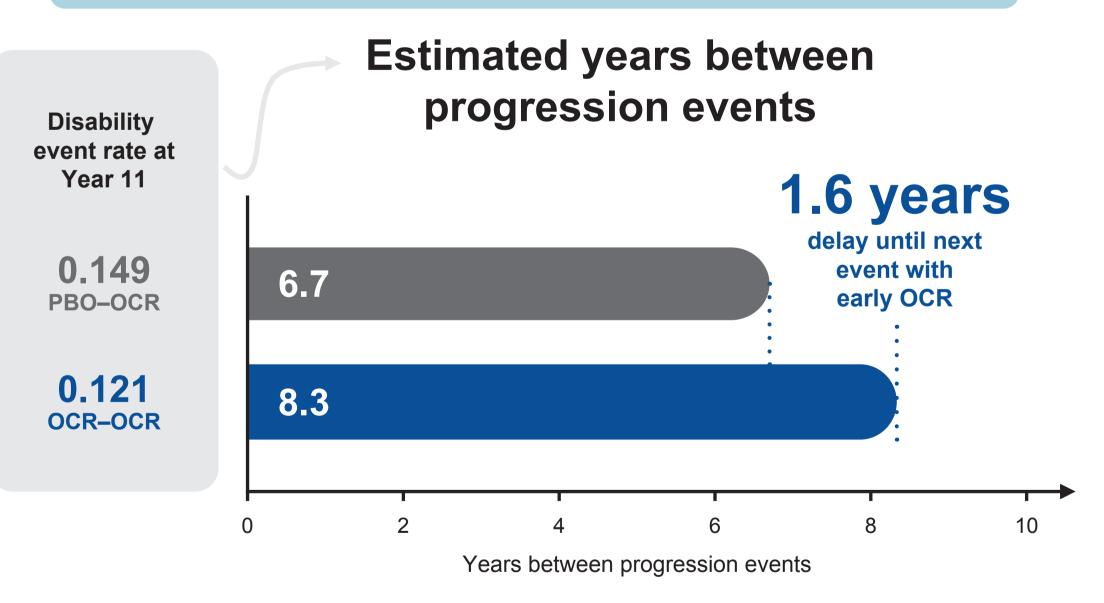
NB: Limitations inherent in all long-term, observational open-label extension studies of DMTs remain pertinent to this study (e.g., possible attrition bias due to temporal decrease in patient numbers)



OPERA I/II and ORATORIO: Efficacy Outcomes

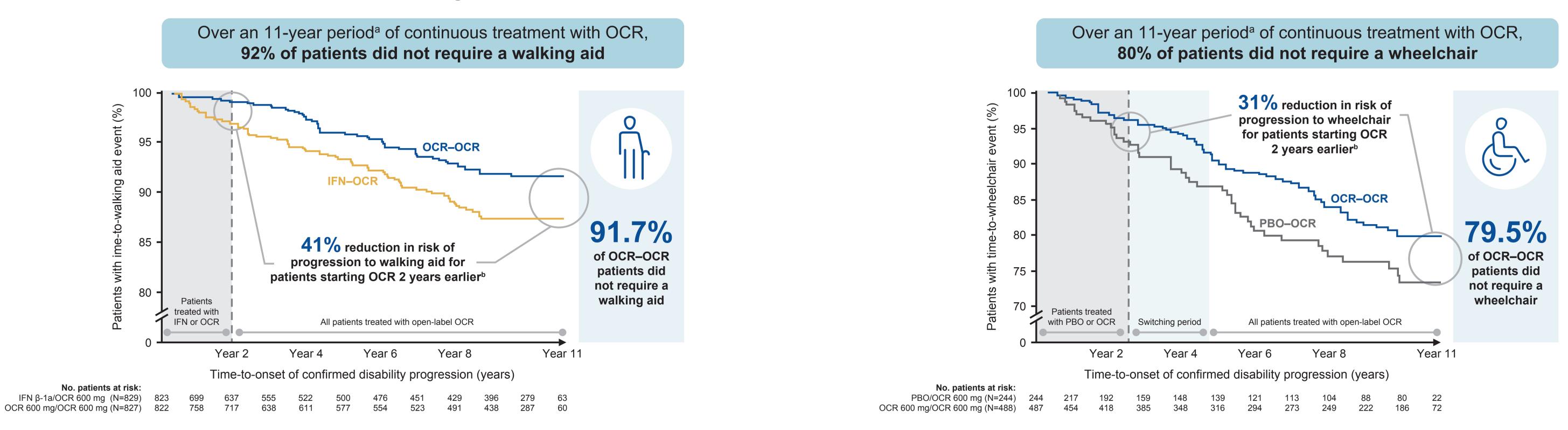
^aCDP is also termed confirmed disability worsening; ^bComposite CDP requires at least one of the following: (1) an increase in EDSS score of <5.5 points, or a <0.5-point increase from a BL score of <5.5 points; (2) a 20% increase from BL in time to complete the 9HPT; (3) a 20% increase from BL in the T25FW.


RESULTS


^aThe median follow-up time for patients continuously treated with OCR in the pooled OPERA I/II population was 10.5 years (range 0.0–12.2) and in ORATORIO was 9.9 years (range 0.0–12.6); ^bAverage HR over 11-year period: OPERA I/II HR

Disability Event Rate Expressed as Annualised Repeated 48W-CDP-EDSS

Patients initiating OCR 2 years earlier were estimated to have a 24% (8.2 years) longer interval between disability events



Patients initiating OCR 2 years earlier were estimated to have a 19% (1.6 years) longer interval between disability events

Time to Walking Aid

Time to Wheelchair

^aThe median follow-up time for patients continuously treated with OCR in the pooled OPERA I/II population was 9.9 years (range 0.0–12.2) and in ORATORIO was 9.9 years (range 0.0–12.6); ^bAverage HR over 11-year period: HR (95% CI): 0.59 (0.41–0.85); p=0.0037. Risk reduction: 41%; ORATORIO HR (95% CI): 0.69 (0.47–1.00); p=0.0496. Risk reduction: 31%.

REFERENCES

ABBREVIATIONS DISCLOSURES

sclerosis:

1.	Wilson LS, et al. Int J MS Care 2015;17:74–82.	 9HPT, Nine-Hole Peg Test; 48W, 48-week; ARR, annualised relapse rate; BL, baseline; CD20, cluster of differentiation 20; CDP, confirmed disability progression; DMTs, disease-modifying therapies EDSS, Expanded Disability Status Scale; FPI, first patient in; HR, hazard ratio; IFN, interferon; MS, multiple sclerosis; N/E, new/enlarging; OCR, ocrelizumab; PBO, placebo; PPMS, primary progressive multiple sclerosis; RMS, relapsing multiple sclerosis; T25FW, Timed 25-Foot Walk.
2.	Ontaneda D, <i>et al. Lancet Neurol</i> 2019;18:973–980.	
3.	Cree BAC, <i>et al. Curr Opin Neurol</i> 2022;35:262–270.	
4.	OCREVUS [ocrelizumab] Full Prescribing Information. Genentech, Inc., 2020.	
5.	OCREVUS [ocrelizumab] Summary of Product Characteristics. Roche Pharma AG, 2020.	
6.	Hauser SL, <i>et al. AAN</i> 2024; Presentation S31.005.	
7.	Roche data on file.	

SL Hauser serves on scientific advisory boards for Alector, Annexon, Accure and Hinge; has previously served on the Board of Trustees for Neurona, and has received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd and Novartis for CD20-related meetings and presentations. G Giovannoni has received personal compensation for serving as a consultant for F. Hoffmann-La Roche Ltd, AbbVie, Aslan, Atara Biotherapeutics, Biogen, Bristol Myers Squibb-Celgene, GlaxoSmithKline, GW Pharma, Janssen/Johnson and Johnson, Japanese Tobacco, Jazz Pharmaceuticals, LifNano, Merck and Company, Merck KGaA/EMD Serono Moderna, Novartis, Sanofi-Genzyme and Teva. M Filippi is Editor-in-Chief of the Journal of Neurology and Associate Editor of Human Brain Mapping, Neurological Sciences and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche and Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda and Teva; participation in advisory boards for Alexion, Biogen, Bristol Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme and Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol Myers Squibb, Eli Lilly, Novartis and Sanofi-Genzyme; and he receives research support from Biogen Idec., Merck-Serono, Novartis, Roche, the Italian Ministry of Health, the Italian Ministry of University and Research, and FISM (Fondazione Italiana Sclerosi Multipla). MS Weber receives research support from the Deutsche Forschungsgemeinschaft (DFG; WE 3547/5-1), Novartis, Teva, Biogen Idec., Roche, Merck and the ProFutura Program of the Universitätsmedizin Göttingen; is serving as an editor for PLoS One; received travel funding and/or speaker honoraria from Biogen Idec., Merck-Serono, Novartis, Roche, Teva, Bayer and Genzyme. X Montalban has received speaking honoraria and travel expenses for participation in scientific meetings, has been a steering committee member of clinical trials or participated in advisory boards of clinical trials in the past years with AbbVie, Actelion, Alexion, Biogen, Bristol Myers Squibb/Celgene, EMD Serono, F. Hoffmann-La Roche Ltd, Immunic, Janssen, MedDay, Merck, Mylan, NervGen, Novartis, Sandoz, Sanofi-Genzyme, Teva, TG Therapeutics, Exemed, MSIF and NMSS. JA Nicholas has received consultancy fees from Biogen, Bristol Myers Squibb, EMD Serono, Genentech, Novartis and TG Therapeutics; has received research support from Biogen, Novartis, Genentech, University of Buffalo and PCORI; has served on speakers' bureau for Alexion, Bristol Myers Squibb, EMD Serono, Horizon, Viela Bio and TG Therapeutics. HM Schneble is an employee of and a shareholder in F. Hoffmann-La Roche Ltd. **Q Wang** is an employee of F. Hoffmann-La Roche Ltd. **L Kappos** has received no personal compensation. His institutions (University Hospital Basel/Foundation) Clinical Neuroimmunology and Neuroscience Basel) have received and used exclusively for research support: Payments for steering committee and advisory board participation, consultancy services and participation in educational activities from: Actelion, Bayer, Bristol Myers Squibb, df-mp Molnia & Pohlmann, Celgene, Eli Lilly, EMD Serono, Genentech, GlaxoSmithKline, Janssen, Japan Tobacco, Merck, MH Consulting, Minoryx, Novartis, F. Hoffmann-La Roche Ltd, Senda Biosciences Inc., Sanofi, Santhera, Shionogi BV, TG Therapeutics and Wellmera; and license fees for Neurostatus-UHB products; grants from Novartis, Innosuisse and Roche.

ACKNOWLEDGEMENTS

We would like to thank all patients, their families and the investigators participating in this study. The studies are sponsored by F. Hoffmann-La Roche Ltd, Basel Switzerland. Writing and editorial assistance for this presentation was provided by Nucleus Global and funded by F. Hoffmann-La Roche Ltd.