
Introduction
• Diffuse large B-cell lymphoma (DLBCL) is the most commonly diagnosed 

form of non-Hodgkin lymphoma and is often characterised by aggressive 
tumour growth in lymph nodes or extranodal sites.1

•	 DLBCL	can	be	classified	by	cell	of	origin	(COO)	into	two	principal	
subtypes: activated B-cell-like (ABC) or germinal centre B-cell-like (GCB) 
tumours (Figure 1).1	COO	classification	can	have	prognostic	value	
because patients with ABC tumours may experience poorer treatment 
outcomes with rituximab plus cyclophosphamide, doxorubicin, vincristine 
and	prednisone	(R-CHOP)	immunochemotherapy	than	those	with	GCB	
tumours.2–4 

•	 Among	current		methods	for	determining	COO	some	can	be	expensive,	
time-consuming, weakly reproducible among pathology labs, and may 
poorly	reflect	the	underlying	tumour	biology.4,5 

•	 Deep-learning	models	that	classify	DLBCL	by	COO	using	whole-slide	
images (WSIs) stained with haematoxylin and eosin (H&E) offer an 
opportunity	to	automate	and	standardise	COO	classification.

• Random forest (RF) models,6	which	perform	classifications	using	a	
set of simple decision trees, have greater explainability and are less 
computationally intensive than previously proposed attention-based 
multiple instance learning (A-MIL) models, which use deep networks.7

Aim
•	 To	develop	an	RF	model	and	compare	its	performance	in	COO	
classification	versus	an	A-MIL	model,	and	to	evaluate	the	importance	of	
cellular	features	that	the	RF	model	uses	to	perform	COO	classification.
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Methods 
• Algorithms were trained, validated and tested using data from the phase 2 
CAVALLI	(ClinicalTrials.gov	identifier:	NCT02055820)	and	phase	3	GOYA	
(ClinicalTrials.gov	identifier:	NCT01287741)	trials.8,9

•	 H&E-stained	WSIs	(40	×	magnification)	from	410	patients	with	DLBCL	were	
used. The training set contained 120 ABC-labelled and 236 GCB-labelled 
WSIs; the test set contained 22 ABC-labelled and 32 GCB-labelled WSIs 
(Figure 2).

• Tumour regions on each WSI were manually annotated and a maximum of 
30 tiles (1024 × 1024 pixels) were extracted from annotated regions for 
each WSI (Figure 2).

•	 Gene	expression	profiling	was	used	to	confirm	the	ground	truth	
COO classification.	

• RF model
–	 The	workflow	for	RF	model	training	and	COO	classification	is	shown	
in Figure 3.

– Tiles extracted from annotated tumour regions were superimposed 
with binary	cellular	masks	to	extract	cellular	features.	

– Cell-level features were aggregated to produce tile-level statistical 
profiles	for	each	WSI.

–	 Tile-level	feature	arrays	and	WSI-level	ground	truth	COO	labels	from	the	
training	data	set	were	used	to	train	an	RF	classifier	model	with	5-fold	
cross-validation (Figure 2).

– RF hyper-parameters optimised through cross-validation were used to 
retrain the RF model on the full training data set; model performance 
was	tested	on	the	test	data set.

– Model explainability was assessed by computing the contribution of 
each	cellular	feature	to	the	outcome	of	the	COO	classification	using	
SHapley	Additive	exPlanations	(SHAP).10

• A-MIL model
–	 The	workflow	for	A-MIL	model	training	and	COO	classification	is	shown	in	

Figure 3.
–	 A	pretrained,	self-supervised	learning	model	with	a	ResNet50	backbone	

was used to generate tile-level embeddings from the same tiles used to 
train the RF model. 

–	 COO	classification	was	performed	using	an	A-MIL	network	to	calculate	
attention weights for each tile and predict the WSI label based on the 
weighted sum of tile-level predictions. The model was trained on the 
training data set with 5-fold cross-validation (Figure 2).

– A-MIL hyper-parameters optimised through cross-validation were 
used to retrain the A-MIL model on the full training data set; model 
performance was tested on the test data set.

• The performance of the RF and A-MIL models was measured using the area 
under	the	receiver	operating	characteristic	(AUROC)	curve.

Results
•	 The	COO	classification	performance	of	the	RF	and	A-MIL	models	is	shown	

in Table 1. In the validation and test data sets, the A-MIL model had slightly 
better performance than the RF model.

•	 SHAP	analysis	of	the	RF	model	performance	on	the	training	and	test	sets	
revealed	the	10	cellular	features	that	had	the	greatest	effect	on	COO	
classification	(Figure 4). These included: graph features that characterised 
tumour cell spatial distribution; shape features that characterised the 
nucleus shape; radial and curvature features that characterised tumour 
cell nuclear boundaries; texture features that characterised tumour cell 
chromatin pattern; and cell density features.

Table 1. COO classification performance for RF and A-MIL models

Model type Training seta Validation seta Test setb

AUROC,  
mean ± SD

AUROC,  
mean ± SD

AUROC

RF model 0.771 ± 0.004 0.675 ± 0.045 0.715

A-MIL model 0.713 ± 0.020 0.687 ± 0.026 0.737

aCross-validated mean and SD values are shown for the training and validation data sets. bPerformance	of	the	
single optimised model is shown for the test data set. 
A-MIL,	attention-based	multiple	instance	learning;	AUROC,	area	under	the	receiver	operating	characteristic	
curve;	COO,	cell	of	origin;	RF,	random	forest;	SD,	standard	deviation.

Conclusions
• Using H&E-stained WSIs from patients with DLBCL, an RF model achieved similar COO classification performance to that of an A-MIL model.

• In contrast to A-MIL models that are explainable by locating high-attention regions in WSIs, the RF model was able to identify specific cellular features 

that have a high impact on the output of the COO classification.

• The RF model provides insightful information that may contribute to better understanding of disease biology in DLBCL and improve model credibility.
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Figure 2. Description of (a) the data sets used to train, validate and test the RF and A-MIL models and representative tiles extracted from H&E-stained 
WSIs taken from patients with (b) GCB and (c) ABC DLBCL 

Figure 3. Workflows for image feature extraction, model training and performance testing for the RF and A-MIL models

Figure 1. COO in DLBCL

Figure 4. SHAP analysis of the RF model for (a) the training data set and (b) the test data set
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