• Home
  • Publications
  • An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of methotrexate in human serum and plasma

clinical chemistry and laboratory medicine

An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of methotrexate in human serum and plasma

Primary Manuscript
Publication date: 07 April, 2023

Authors

Abstract

To develop an isotope dilution-liquid chromatography-tandem mass spectrometry-(ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for quantification of methotrexate in human serum and plasma. Quantitative nuclear magnetic resonance (qNMR) was used to determine absolute methotrexate content in the standard. Separation was achieved on a biphenyl reversed-phase analytical column with mobile phases based on water and acetonitrile, both containing 0.1% formic acid. Sample preparation included protein precipitation in combination with high sample dilution, and method validation according to current guidelines. The following were assessed: selectivity (using analyte-spiked samples, and relevant structural-related compounds and interferences); specificity and matrix effects (via post-column infusion and comparison of human matrix vs. neat samples); precision and accuracy (in a five-day validation analysis). RMP results were compared between two independent laboratories. Measurement uncertainty was evaluated according to current guidelines. The RMP separated methotrexate from potentially interfering compounds and enabled measurement over a calibration range of 7.200-5,700 ng/mL (0.01584-12.54 μmol/L), with no evidence of matrix effects. All pre-defined acceptance criteria were met; intermediate precision was ≤4.3% and repeatability 1.5-2.1% for all analyte concentrations. Bias was -3.0 to 2.1% for samples within the measuring range and 0.8-4.5% for diluted samples, independent of the sample matrix. RMP results equivalence was demonstrated between two independent laboratories (Pearson correlation coefficient 0.997). Expanded measurement uncertainty of target value-assigned samples was ≤3.4%. This ID-LC-MS/MS-based approach provides a candidate RMP for methotrexate quantification. Traceability of methotrexate standard and the LC-MS/MS platform were assured by qNMR assessment and extensive method validation.

Welcome to Medically

The Roche Science Hub

This website is a non-promotional global resource intended to facilitate transparent scientific exchange regarding developments in medical research, diagnostics, and disease management. It is intended for healthcare professionals.

Not a healthcare professional? Browse:

This global website is intended for healthcare professionals outside the UK, US, Canada and Australia. The content on this website may include scientific information about experimental or investigational compounds, indications and services that are not approved or valid in your jurisdiction. Registration status and prescribing information of medicinal products may differ between countries. Please refer to local product information for any medicinal products mentioned on this website. Information available on this website does not constitute professional medical advice, and Roche and Genentech accept no responsibility for access to or use of the same.

You are Leaving Medically

By following this link, you are leaving Roche Website and entering a site that is not owned or controlled by Roche. Roche does not take any responsibility for acces to or use of this website, nor for any content therein.

You are Leaving the Global Medically Site

By following this link, you are being redirected to another Roche page.