• Home
  • Publications
  • An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure for the quantification of carbamazepine- 10,11-epoxide in human serum and plasma

clinical chemistry and laboratory medicine

An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure for the quantification of carbamazepine- 10,11-epoxide in human serum and plasma

Primary Manuscript
Publication date: 22 March, 2024

Share this page

Close Tooltip
Copy Link Tooltip

Copy page URL

Authors

Abstract

A reference measurement procedure (RMP) using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) was developed and validated with the aim of accurately measuring carbamazepine-10,11-epoxide concentrations in human serum and plasma. To establish traceability to SI units, the absolute content of the reference material was determined using quantitative nuclear magnetic resonance (qNMR) spectroscopy. As sample preparation a protein precipitation protocol followed by a high dilution step was established. Chromatographic separation from carbamazepine and potential metabolites was achieved using a C18 stationary phase. Selectivity, specificity, matrix effects, precision and accuracy, inter-laboratory equivalence, and uncertainty of measurement were evaluated based on guidelines from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the Expression of Uncertainty in Measurement. The RMP demonstrated very good selectivity and specificity, showing no evidence of a matrix effect. This enabled accurate quantification of carbamazepine-epoxide in the concentration range of 0.0400-12.0 μg/mL. The intermediate precision was found to be less than 2.1 %, and the repeatability coefficient of variation (CV) ranged from 1.2 to 1.8 % across all concentration levels. Regarding accuracy, the relative mean bias varied from 1.4 to 2.5 % for native serum levels and from 1.4 to 3.5 % for Li-heparin plasma levels. The measurement uncertainty for single measurements ranged from 1.6 to 2.1 %. In this study, we introduce a new LC-MS/MS-based candidate RMP for accurately measuring carbamazepine-10,11-epoxide in human serum and plasma. This novel method offers a traceable and dependable platform, making it suitable for standardizing routine assays and assessing clinically relevant samples.

Welcome to Medically

The Roche Science Hub

This website is a non-promotional global resource intended to facilitate transparent scientific exchange regarding developments in medical research, diagnostics, and disease management. It is intended for healthcare professionals.

Not a healthcare professional? Browse:

This global website is intended for healthcare professionals outside the UK, US, Canada and Australia. The content on this website may include scientific information about experimental or investigational compounds, indications and services that are not approved or valid in your jurisdiction. Registration status and prescribing information of medicinal products may differ between countries. Please refer to local product information for any medicinal products mentioned on this website. Information available on this website does not constitute professional medical advice, and Roche and Genentech accept no responsibility for access to or use of the same.

You are Leaving Medically

By following this link, you are leaving Roche Website and entering a site that is not owned or controlled by Roche. Roche does not take any responsibility for acces to or use of this website, nor for any content therein.

You are Leaving the Global Medically Site

By following this link, you are being redirected to another Roche page.